А. А. Гурштейн. Птолемей и Коперник. Послесловие редактора
В. А. Бронштэн. Клавдий Птолемей. М., «Наука», 1988
Ответственный редактор, доктор физико-математических наук, А. А. Гурштейн
Птолемей создал естественнонаучную теорию, которая более тысячелетия претендовала на абсолютную истинность. Коперник открыл человечеству глаза на то, что научная истина еще отнюдь не составляет истины абсолютной. На базе давно известного, давно устоявшегося эмпирического материала Коперник предложил великую теорию, в корне отличную от великой теории Птолемея. Отсюда берет истоки традиция недооценивать значение творчества Птолемея, противопоставлять «ненаучности» Птолемея подлинно научные взгляды Коперника. Но кто и как способен удостоверить подлинную научность в ходе рождения и становления новых смелых идей?
Нам хотелось бы заявить в полный голос, что Птолемей и Коперник — две личности, не уступающие друг другу по значению в реальном историческом процессе развития естествознания. Их имена не должны противопоставляться, они должны стоять рядом как символы двух величайших достижений естественнонаучной мысли. Нам хотелось бы одновременно подчеркнуть, что не только Птолемей, но даже и Коперник отнюдь не были единоличными творцами общенаучных революций. Оба они стали авторами научных представлений, переживших многие столетия, оба активно способствовали выработке нового стиля мышления, однако общенаучные революции — относительно краткосрочные этапы перехода науки на новые рельсы, определяющие формирование иных исторических типов науки, — происходили не только благодаря деятельности гениальных ученых, но и в силу вызревания необходимых условий, наступающих в связи со всем ходом социально-экономического развития человечества.
Особенно непросто обстоит дело с анализом творчества Птолемея.
«Альмагест» Клавдия Птолемея — научное произведение, значение которого нельзя по достоинству оценить в прокрустовом ложе одной лишь истории астрономии. Роль Птолемея в процессе становления естествознания уникальна. Она не знает себе равных. Какие бы новые обстоятельства его работы ни были извлечены на суд общественности, какие бы аспекты его деятельности ни подвергались сегодня критике, место Птолемея в истории мировой науки навечно останется столь же незыблемым, как место Менделеева, Ньютона, Коперника или Евклида.
Дело, разумеется, не только в той счастливой случайности, что труд Птолемея не затерялся в раннем средневековье и полностью дошел до наших дней в византийских списках и арабских переводах. Сравнительный анализ различных источников дает известное представление и о многих других крупных сочинениях древности как до, так и после Птолемея. Суть заключается в самом характере этого уникального сочинения.
Сколь бы древними ни были пласты человеческой культуры, которые лопата археолога вырывает время от времени из пучины забвения, следы пытливости человеческого разума предстают перед нашим взором всегда и повсеместно. В палеолите и в неолите, на заре эры рабовладения и в античности, в гротах скованной ледниковым панцирем Европы и в африканском ущелье Олдовей, на территории Индии и Китая, в Междуречье и в Мезоамерике, на всем протяжении изначально освоенного человечеством экваториального пояса Земли в пределах между широтами ±45° наши далекие предки оттачивали на оселке практики научный метод познания окружающей природы: наблюдали, систематизировали объекты и явления, экспериментировали, добивались теоретических обобщений, которые волей-неволей проходили дальнейшую проверку жизнью.
Древние народы Армянского нагорья были, по-видимому, среди первых, кто не только заметил взаимосвязь между движением Солнца по эклиптике и временами года, но и закрепил положение эклиптики среди звезд путем выделения «круга зверей» — зодиакальных созвездий. С точки зрения рождения научных понятий в высшей степени поучительно, что в Мезоамерике, подле экватора Земли, практика наблюдений за небесными светилами была совершенно иной, и там вообще не возникло понятия эклиптики: времена года фиксировались по уклонению в полдень Солнца от зенита. В разных концах мира древние люди возводили шедевры научно-технической мысли: Стоунхендж, египетские пирамиды, Храм надписей в Паленке, акведук Эвпалина и много, много иных.
Вырвавшаяся несколько вперед в своем развитии греко-римская цивилизация на стыке Европы, Азии и Африки впервые взяла на себя на рубеже нашей эры труд в письменном виде подвести предварительные итоги развития Ойкумены. Античность стала эпохой гигантских по размаху обобщающих трудов. К ним можно отнести философские сочинения Аристотеля, «Начала» Евклида, «Географию» Страбона, «Естественную историю» Плиния Старшего, медицинские труды Галена и, наконец, «Синтаксис» Птолемея, который чаще известен под арабским названием «Альмагест».
Мы характеризуем то или иное историческое лицо эпитетом великий лишь в том случае, если в своей сфере деятельности ему удалось наиболее полно выразить сущность эпохи. Великий Птолемей с успехом свел воедино и изложил на языке математики астрономические представления поздней античности. При этом сам он как человек остается для нас почти совершенно безликим. Его биография, как могли убедиться читатели настоящей книги, - сплошное белое пятно.
О. Нейгебауэр пишет в книге «Точные науки в древности»: «Как однажды сказал Гильберт, значение научной работы можно измерить числом публикаций, чтение которых становится ненужным после этой работы» (1). Он делает свое замечание именно в той связи, что после «Начал» Евклида и «Альмагеста» Птолемея для исследователей (не беря в расчет, конечно, историков науки) отпала необходимость в чтении вообще всех предшествующих книг по математике и астрономии.
Идеал естествознания
Ни у кого не вызывает возражений, что Птолемей в «Альмагесте» впервые изложил в связной форме астрономическую картину мира. Однако значение «Альмагеста», как мы уже подчеркнули раньше, несравненно глубже. Если Плиний Старший остановился на уровне систематизированных описаний, т. е. на относительно низком, предварительном этапе естественнонаучной деятельности, и если Евклид ограничивался собственно математикой, т. е. аппаратом, формализованным языком научного анализа, поскольку математика сама по себе не принадлежит к естествознанию, то Птолемей впервые в истории человечества дал бросающийся в глаза образец развернутой, математизированной, полнокровной естественнонаучной теории. Она охватила широкий круг проблем и обобщила громадный эмпирический наблюдательный материал. Она имела очевидную прогностическую ценность и широко использовалась на практике. В сущности, теория Птолемея для своего времени отвечала самым строгим критериям научности, выработанным наукой XX в. Она заняла место своего рода эталона для всего естествознания. А Птолемей в качестве автора этой теории по справедливости может быть причислен к сойму классиков естествознания. Именно после труда Птолемея астрономия приобрела то «поистине уникальное положение, которое она занимает среди других наук» (2).
Характерно, что ни упомянутые нами Евклид, Страбон, Плиний, ни многие другие античные мыслители никак не повлияли на мировоззренческие установки раннего христианства. И в то же самое время христианская церковь принуждена была считаться со взглядами язычника Птолемея. Разумеется, после многовековых диспутов они были деформированы, адаптированы, тщательно подогнаны к приемлемой для религии форме. Однако факт остается фактом: религия использовала убедительно обоснованную естественнонаучную теорию Птолемея в собственных целях и в конечном счете не рискнула пойти, как требовали некоторые, на открытую конфронтацию с идеями этого язычника.
Таким образом, Клавдий Птолемей и в его лице античная астрономия преподнесли всему естествознанию предметный урок. Птолемей первым в исполинском масштабе продемонстрировал великое искусство полноценно описывать природные явления на языке математики — на кине-матико-геометрической модели.
К сожалению, всякая медаль имеет обратную сторону. Вследствие существования теории Птолемея стала окончательно узаконенной появившаяся задолго до него убежденность в реальности разделения Космоса на два мира: надлунный и подлунный. В надлунном мире царил Логос, божественный порядок, птолемеева гармония. Его изучение составляло предмет великой и рано обособившейся научной дисциплины — астрономии. Подлунный же мир отличался аморфностью, беспорядком и изменчивостью. Он достался в удел прозябающей физике, точнее говоря, еще слабо расчлененной «натуральной философии».
А. Койре (3) задается вопросом: почему греческая наука не создала физикй И дает на него ясный ответ: она к этому не стремилась, поскольку была уверена в невозможности добиться успеха.
«Действительно, — пишет А. Койре, — создать физику в нашем смысле слова, а не в том, как ее понимал Аристотель, означает применить к действительности строгие, однозначные, точные математические, и прежде всего геометрические, понятия. Предприятие, прямо скажем, парадоксальное, так как повседневная действительность, в которой мы живем и действуем, не является ни математической, ни математизируемой. Это область подвижного, неточного, где царят «более или менее», «почти», «около того» и «приблизительно»... Отсюда следует, что желание применить математику к изучению природы является ошибочным и противоречит здравому смыслу... Верное на небесах — неверно на Земле. И поэтому математическая астрономия возможна, а математическая физика — нет» (4).
Таким образом, величие теории Птолемея как недостижимого эталона естественнонаучного знания подмяло под себя остальные области естествознания. Эта теория подавляла, сдерживала развитие тех научных дисциплин, которые на первых порах никак не могли тягаться с ней в изощренности математического аппарата. Недосягаемой вершиной высилась она среди остальных наук, адепты которых еще не успели освоить ни эксперимента со строгим количественным исчислением его результатов, ни математических методов представления сводных данных.
Крушение
Теория Птолемея отнюдь не напоминала карточный домик. Скорее ее можно уподобить величественному замку. Обветшание этого замка происходило мучительно медленно, оно затянулось на многие века. Замок приходил в упадок, стены давали трещины, башни кренились, но трещины замазывали, башни ставили на капитальный ремонт, и никому не приходило на ум, что выправить положение уже невозможно: замок держался на насквозь прогнившем фундаменте.
Среди ранних критиков теории Птолемея обычно выделяют нескольких корифеев арабоязычного мира: Ибн аль-Хайсама (известного в Европе под именем «отца оптики» Альхазена), Ибн Рушда (философа, более известного под именем Аверроэса), аль-Битруджи (переводившегося под латинизированным именем Альпетрагия), На-сир ад-Дина ат-Туси, аш-Шатира и ряд других (5). Занятые определением фундаментальных астрономических постоянных, составлением звездных каталогов и эфемерид планет, эти в большинстве своем астрономы-наблюдатели, как никто другой, не раз наталкивались на вопиющие разночтения между теорией Птолемея и данными наблюдений. Они брались за доработку теории, не меняя ее основ. Были у некоторых из названных ученых возражения и философского характера, однако с ними были дополнительные трудности.
Математические построения Птолемея в «Альмагесте» носили исключительно кинематико-геометрический характер и не касались неясных вопросов реального воплощения небесных сфер, эпициклов, деферентов и т. п. В действительности Птолемей писал на эту тему в небольшой работе «Планетные гипотезы», однако основная «физическая» суть концепции небесных сфер была разработана задолго до Птолемея Аристотелем. В этой связи количественная кинематико-геометрическая картина Птолемея с течением времени была пополнена гораздо более ранней качественной картиной мира Аристотеля. Вот этот-то птолемеево-аристотелевский конгломерат уже отнюдь не отвечал критериям научности не только современным, но даже весьма древним, поскольку содержал в себе явные противоречия: аристотелевские сферы никак не должны были пересекаться в пространстве, а потому не могли приходить в движение так, как того требовала все более усложнявшаяся с течением времени кинематика Птолемея. Особые неприятности со временем стали создавать кометы, и, как едко высказался журналист Н. Колдер, «на протяжении столетий кометы обладали определенным философским значением, как ручные гранаты космической революции. Далеко улетевшая комета 1577 г. разбила вдребезги прозрачные хрустальные сферы, которые якобы несли на себе всю компанию планет...» (6).
Остановил Солнце, двинул Землю
«Современное исследование природы... как и вся новая история, ведет свое летоисчисление с той великой эпохи, которую мы, немцы, называем, по приключившемуся с нами тогда национальному несчастью, Реформацией, французы — Ренессансом, а итальянцы — Чинквеченто и содержание которой не исчерпывается ни одним из этих наименований... Это был величайший прогрессивный переворот из всех пережитых до того времени человечеством, эпоха, которая нуждалась в титанах и которая породила титанов по силе мысли, страсти и характеру, по многосторонности и учености»,— так писал Ф. Энгельс в «Диалектике природы» (7).
Жизнь Коперника и гений Коперника целиком принадлежат этой великой эпохе. Его современниками были Леонардо да Винчи, Колумб, Магеллан, Васко да Гама, Микеланджело Буонаротти и Рафаэль.
Коперник был свидетелем яростных столкновений и раскола в рядах католиков. На его памяти профессор Виттенбергского университета Мартин Лютер прибил к дверям собора «95 тезисов» и сжег папскую буллу. Каноник Коперник был свидетелем и ответной реакции католической церкви — рождения Ордена иезуитов с их беспримерным девизом «цель оправдывает средства».
События этого бурного времени наложили отпечаток на личность Коперника, научная деятельность которого сама стала едва ли не самой высокой из вершин эпохи Возрождения. Имя Коперника — объект особой гордости всего человечества, и нам приятно добавить — объект особой гордости славянской науки.
В отличие от биографии Птолемея жизнь и творческая деятельность Николая Коперника из Торуня известны ныне вдоль и поперек. Мы не будем освещать их здесь, ограничившись констатацией общего факта. Если в лице Птолемея астрономия как созидательница впервые в истории человечества выработала великую научную теорию, то в лице Коперника именно астрономии пришлось впервые в истории сокрушать великую научную теорию.
Впоследствии всем без исключения научным дисциплинам доводилось повергать в прах своих идолов. Химики похоронили флогистон. Теория относительности ограничила безбрежность концепции Ньютона. Открытие Гарвеем кровообращения поставило крест на предшествующих взглядах в биологии. Но ни одна смена основополагающих научных представлений не протекала столь же драматично, как крушение астрономической картины мира Птолемея, безраздельно господствовавшей более тысячелетия.
Как мы уже отмечали, астрономия намного раньше других естественнонаучных дисциплин, как минимум со времени Птолемея, четко определила и объект, и метод своих исследований. Она занималась, казалось бы, наиболее общей из всех возможных сущностей — космосом, Вселенной. Не случайно, что с глубокой древности и на протяжении всего долгого средневековья именно астрономическая деятельность в наибольшей степени отвечала идеалам научности, а астрономия справедливо слыла царицей естественных наук. Это обстоятельство отразилось в бесчисленном количестве фактов: от существования музы астрономии Урании до официального положения астрономии в квадривиуме средневекового университета. И крушение великой астрономической теории Птолемея радикально отозвалось на всем естествознании.
Через несколько десятилетий после смерти автора труд Коперника оказался в центре водоворота событий общенаучной революции. Само собой разумеется, что спор шел и о проблемах астрономии тоже. Но это отнюдь не исчерпывает основных результатов общенаучной революции. Более того, мы склонны видеть главный результат совсем в ином. Он нашел выражение в так называемой доктрине «двух книг», которую разделяли Томмазо Кампанелла, Галилео Галилей и ряд других современных им мыслителей. Согласно этой доктрине Священное писание представляет собой книгу божественного откровения, в то время как природа, хотя и является «книгой» божественного творения, сочинена на языке математики. Она может быть прочитана человеком вне божественного откровения и составляет, по Галилею, «настоящий предмет философии» (8).
Такая кардинальная перемена в понимании места науки в обществе, еще скованном средневековыми религиозными традициями, сочеталась с мыслью о важности прагматической направленности науки, провозглашенной Ф. Бэконом: «Знание — сила». Соображения о практической пользе науки звучат рефреном буквально у всех авторов этого периода, особенно четко в Британии. «...Эти знания приобретаются не просто ради самих себя, а для того, чтобы дать возможность человеку... вызывать и совершать такие эффекты, которые могут наиболее способствовать его благополучию в мире»,— слова, принадлежащие Р. Гуку (9). Р. Бойль прямо называет один из своих памфлетов «Да будут блага человечества приумножены проникновением естествоиспытателя в ремесло». Вовсе не случайно XVII в. заслужил в литературе имя «века опытной науки». Экспериментально-количественный подход в сочетании с прагматической нацеленностью пауки на решение задач, приумножающих блага человека (т. е., строго говоря, господствующего класса), открыли в новое время дорогу для невиданного ранее прогресса науки.
Коперник и общенаучная революция
Из исследований последних лет, посвященных коперниковской теме, нам хотелось бы специально отметить хорошо взаимно дополняющие друг друга работы американских историков астрономии О. Гингерича и Б. Райтсмена. На конкретном документальном материале они убедительно показали специфику восприятия труда Коперника его современниками, отсутствие революционного подъема мысли у читателей Коперника еще на протяжении полустолетия после смерти автора. Есть основания полагать, что в подлинном значении гелиоцентризма для естествознания поначалу отдавали себе отчет лишь сам Коперник да его юный друг Ретик. К остальному научному миру осознание этого пришло гораздо позднее (10).
Было бы полной наивностью полагать, что Коперник на все сто процентов согласовал свою теорию с существовавшими наблюдениями. Это, конечно, далеко не так, и трудности, стоявшие перед сторонниками нового учения, были на самом деле исключительно велики, а позиция консерваторов отнюдь не сокрушена. Широко известно, что теория Коперника в ее «чистом» виде не могла приблизиться по прогностической точности к модели Птолемея. Чтобы не превзойти, а всего-навсего сравняться по точности с Птолемеем, Коперник принужден был сохранить многие архаические элементы: несколько малых эпициклов и эксцентры. «Система Коперника была ни более простой, ни более точной, чем система Птолемея, и с прагматической точки зрения ей трудно было отдать предпочтение», — справедливо заключает И. С. Алексеев (11).
Критический ум известного современного западного философа П. Фейерабенда, апологета анархистской теории познания, беспощадного бичевателя всех слабостей науковедческих конструкций, не оставил без внимания того, что Коперник предумышленно обходил молчанием неразрешимую для него проблему изменения блеска планет в связи с изменениями их расстояния до Земли — кардинальное научное возражение XVI в. против реальности гелиоцентризма (12). Коперник сосредоточился на кинематике движения планет и не желал реагировать на явные противоречия в возникающей физической картине. Фейерабенд выделяет отрывок из «зловредного» введения А. Осиандера: «Ибо кто же не знает, что такое допущение необходимо влечет, что диаметр планеты, когда она ближе всего к Земле, должен быть в четыре раза больше по сравнению с тем, который она имеет, будучи в самой отдаленной точке, а ее тело — в шестьдесят раз больше, что противоречит опыту всех времен». Таким образом, заключает Фейерабенд, «в реалистической интерпретации учение Коперника было несовместимо с очевидными фактами».
Нам хотелось бы наконец подчеркнуть, что в новых исследованиях обращено серьезное внимание на роль Реформации в формировании социальных условий, сопутствовавших созданию гелиоцентрической системы мира. Все эти исследования как нельзя лучше подкрепляют взгляд на Коперника как на предтечу грядущей общенаучной революции, происшедшей на рубеже XVI и XVII вв.
История науки наглядно свидетельствует о неравномерном характере ее прогресса: эпохи сравнительно спокойного развития сменяются периодами стремительных взлетов научного творчества. Некоторые из этих периодов «бури и натиска», которым, в частности, свойственно коллективное освоение сообществом ученых принципиально новых фундаментальных взглядов, получили название научных революций. Интерес к проблеме научных революций как важнейших переломных моментов развития науки традиционен и характерен для марксистско-ленинской философии. Вспомним высказывание Ф. Энгельса из «Диалектики природы», что «Революционным актом, которым исследование природы заявило о своей независимости и как бы повторило лютеровское сожжение папской буллы, было издание бессмертного творения, в котором Коперник бросил — хотя и робко и, так сказать, лишь на смертном одре — вызов церковному авторитету в вопросах природы» (13).
Проблемы научных революций исследовались во многих широко известных работах. В последние десятилетия на Западе интерес к проблеме научных революций был подогрет концепцией Т. Куна (14). Большое внимание анализу этой проблемы уделялось рядом советских исследователей. Эта тема не сходит со страниц научной периодической печати. Например, в № 7—8 журнала «Вопросы философии» за 1985 г. были помещены очень интересные материалы «Круглого стола» по проблеме «Сущность и социокультурные предпосылки революций в естественных и технических науках».
Важный шаг на пути к корректной постановке проблемы был сделан Н. И. Родным, который различал научные революции трех масштабов: глобальные научные революции, революции в отдельных фундаментальных науках и «микрореволюции» (15). Если использовать для анализа науки кибернетическое понятие сложной системы, приведенному членению соответствует исследование состояний собственно системы, ее подсистем и отдельных элементов.
Придерживаясь в дальнейшем этой же классификации, мы считаем целесообразным уточнить терминологию, выделяя:
а) революции в науке, т. е. общенаучные революции, захватывающие все без исключения ее области — естественные, общественные и технические;
б) революции в отдельных областях знаний (цикл физико-математических наук, химические науки, медико-биологические науки, общественные науки и т. д.);
в) локальные революции в отдельных научных направлениях, которые как таковые не влияют на состояние системы в целом.
Анализ трех уровней научных революций позволяет прийти к выводу, что революции в отдельных научных дисциплинах и локальные революции происходят в результате прогресса собственно науки и свидетельствуют об относительной самостоятельности и активности научного познания. Эти революции второго и третьего уровня не сопряжены с коренной ломкой общей социально-философской картины бытия, а отражаются только на специальных (частных) картинах исследуемой реальности. Что же касается научных революций высшего уровня — общенаучных революций, то, будучи многомерными явлениями с рядом обратных связей, они тем не менее стимулируются и определяются преимущественно социокультурными факторами, причем в ходе этих революций меняется сам исторический тип науки. В ходе этих революций меняется весь комплекс ценностей науки. Сопоставление рассмотренных обстоятельств приводит к выводу о приуроченности общенаучных революций к периодам социально-экономического переустройства общества.
Исключительно плохую услугу в решении проблем научных революций оказывает пагубная традиция их «персонификации», и соображения по этому поводу отнюдь не новы. «Мы почти всегда стараемся упростить историю, прибегая к системе эпонимов (16), иными словами, приписываем важные события отдельным личностям и даем названия этим событиям и эрам по именам этих личностей, — так начал один из своих докладов в поездке по СССР в 1977 г. известный американский исследователь Дж. Г. Симпсон.— Более внимательный взгляд на историю, однако, наводит на мысль, что один человек никогда не совершал великих открытий и ни разу не положил начало новой эре. Обычно эпоним, герой,— это личность, связавшая воедино туманные и разрозненные мысли и превратившая их в единое прочное целое... Это относится, например, к Н. Копернику. Должно было пройти более двух с половиной веков, прежде чем теория Коперника получила всеобщее признание. И хотя мы можем сказать, что Коперник положил начало революции, названной его именем, эта революция шла постепенно, в течение длительного времени, благодаря работам многих ученых, имена которых в большинстве своем забыты... В более широком смысле эта революция была столь медленной, что вернее считать ее интеллектуальной эволюцией...» (17)
Занимаясь проблемами научных революций, непростительно упускать из виду, что наука отнюдь не сводится к совокупности научных знаний. Наука — это в первую очередь специфический вид духовной деятельности, неразрывно связанной с социально-историческими условиями. Хотя наука имеет своей задачей постижение объективной истины, которая не зависит ни от конкретного человека, ни от всего человечества, носитель пауки — человек — не может существовать вне общества. Историческая ограниченность науки прямо связана с ограниченностью общественной практики человечества на данном этапе его социально-экономического развития. Рассматривая науку в социально-историческом аспекте, мы обязаны констатировать, что в общенаучных революциях большую роль играют их глубокие социальные корни. И лишь революции в отдельных научных дисциплинах, которые выделяются по изменению содержания научного знания, связаны, как правило, с деятельностью определенного выдающегося ученого.
Великий польский астроном Н. Коперник был пред вестником грядущей общенаучной революции, социальные условия для которой в середине XVI в. еще не созрели. Радикально преобразовав практическую астрономию, Коперник совершил революцию в этой фундаментальной науке. В дальнейшем его гелиоцентрическая картина мира стала краеугольным камнем общенаучной революции начала XVII в., символами ее по праву служит подвижническая деятельность Дж. Бруно, И. Кеплера, Г. Галилея.
Сводить, однако, научный подвиг Коперника единственно к преобразованию частной науки астрономии было бы неоправданным и незаслуженным принижением значения гелиоцентризма. С другой стороны, придавать «революционному акту» Коперника значение общенаучной революции неправомерно из-за отсутствия в его эпоху надлежащих социальных условий для восприятия революционной стороны учения Коперника.
Нам представляется единственно корректным выходом (точно так давно поступают историки применительно к революциям социальным) отказаться от попыток персонификации общенаучных революций. Этот отказ, кстати сказать, вполне соответствует марксистско-ленинской точке зрения на роль личности в истории. Таким образом, можно согласиться с позицией Б. Райтсмена, что общенаучная революция конца XVI — начала XVII столетия имела среди своих гениальных предвестников великого Коперника и нашла ярких выразителей в лице таких ученых, как Дж. Бруно, И. Кеплер, Г. Галилей.
Следует обратить внимание на то, что в марксистской исторической литературе последних лет выполнено углубленное исследование противоречивого и исключительно важного периода религиозной Реформации. Не случайно в 1984 г. издательство «Молодая гвардия» массовым тиражом выпустило биографическую книгу Э. Соловьева «Непобежденный еретик» о Мартине Лютере. В предисловии к ней академик Т. И. Ойзерман подчеркивает, что сущность Реформации «не исчерпывается тем, что непосредственно подразумевается самим словом, т. е. реформой, переустройством тогдашней церкви. Реформация, как массовое народное движение, подорвала духовную диктатуру папства, нанесла внушительный удар по церковному феодализму и активизировала повсеместное недовольство светским феодальным господством. Она проложила путь новым этическим, юридическим и практико-экономическим воззрениям, которые соответствовали формирующимся капиталистическим отношениям.
Возрождение и Реформация различны по своему культурному облику: их деятели подчас относятся друг к другу с непримиримой враждебностью. И все-таки это лишь различные исторические выражения одного и того же социально-экономического процесса: революционного рождения буржуазного общества. Оба они образуют пролог к великим классовым битвам XVII—XVIII столетий» (18).
Реформация и представляет собой тот важный социокультурный фон, на котором совершено великое интеллектуальное достижение Коперника. Аналогичные мысли его предшественников Аристарха Самосского и Николая Кузанского не были восприняты и подхвачены.
Астрономия еще несколько столетий после Коперника играла роль лидера естествознания. Она, как и прежде, вырабатывала для других дисциплин эталоны научности. Еще один выдающийся астроном, Лаплас, в XIX в. взял на себя труд методолога и сформулировал ясную концепцию механицизма. Пожалуй, «лапласов детерминизм» стал последним крупным вкладом астрономии в методологию естествознания. К концу XIX в. па мощном стволе экспериментальной физики взросла теоретическая физика, которая в конечном счете перечеркнула как «Лапласов детерминизм», так и все другие классические представления о природе. На пороге стояла эра неклассического естествознания.
Развенчанный Птолемей
Гелиоцентризм трудно внедрялся в научную жизнь, однако в конечном счете одержал всеобъемлющую победу. С теорией Птолемея происходило обратное: она господствовала более тысячелетия и потерпела сокрушительное фиаско. Подобный прецедент имел место впервые, и в сознании научного общества еще безраздельно господствовала кумулятивная модель научного прогресса. Значительно позже — скажем, при смене взглядов Ньютона теорией относительности — никому не могло даже прийти в голову упрекать Ньютона в заблуждениях. Было очевидно, что на смену одним научным представлениям приходят другие, более глубокие. Но, не имея подобного опыта, некоторые критики сплошь да рядом упрекали Птолемея именно в научной некомпетентности, писали, что он грубо заблуждался и повел науку по ложному пути. Рецидивы резко отрицательного отношения к деятельности Птолемея не новы.
Как всякий ниспровергнутый с пьедестала деятель, будь то рвавшийся к власти Лжедмитрий или развенчанный Наполеон, Птолемей тоже стал привлекать к себе пристальное внимание историков. Ныне широко цитируются критические высказывания в его адрес со стороны Деламбра, который упрекал Птолемея за то, что он нигде не приводит ясных данных о своих наблюдениях и «не говорит о том, какой могла быть вероятная ошибка его солнечных, лунных и планетных таблиц. Астроном, который сегодня действовал бы подобным образом, вызвал бы к себе полное недоверие» (19).
Впрочем, Деламбр понимает и отчасти оправдывает Птолемея. И уж, конечно, он не опускается до спекуляций, пытаясь стяжать геростратову славу на уличении маститого естествоиспытателя далекого прошлого в мошенничестве. Мы, разумеется, имеем в виду недавно переведенную на русский язык работу Р. Ньютона «Преступление Клавдия Птолемея» с ее воинствующим апофеозом: «Я не знаю, что могут подумать другие, но для меня существует лишь одна окончательная оценка: "Синтаксис" нанес астрономии больше вреда, чем любая другая когда-либо написанная работа, и было бы намного лучше для астрономии, если бы этой книги вообще не существовало. Таким образом, величайшим астрономом античности Птолемей не является, но он является еще более необычной фигурой: он самый удачливый обманщик в истории науки» (20).
К сожалению, в русском издании, вышедшем в 1985 г. с использованием английского оригинала 1978 г., оказался обойденным молчанием тот факт, что под давлением взрыва всеобщего негодования западных коллег Р. Ньютон принужден был отказаться от некоторых своих положений (21). Но он продолжает настаивать на том, что большинство приводимых Птолемеем наблюдений является на самом деле результатом вычислительной подгонки, и это, по всей вероятности, действительно так. Факты, как говорят, упрямы. Но в чем же суть проблемы?
Птолемей, создатель первой крупной математизированной естественнонаучной теории, впервые столкнулся с колоссальной противоречивостью реальных наблюдений. Напомним для наглядности, что диск Луны имеет на небесной сфере поперечник в 0,5°, т. е. 30 угловых минут. Принято считать — и это впоследствии блестяще продемонстрировал Тихо Браге, — что точность угловых наблюдений невооруженным глазом составляет несколько угловых минут и большим ошибкам взяться неоткуда. Однако это глубокое заблуждение.
Птолемей использовал наблюдения, в которых регистрировались не только угловые положения, но и время, а это могло выполняться — особенно при определении характерных точек в движениях Солнца, Луны и планет — очень грубо. Скорость же собственного движения Луны по небесной сфере среди звезд составляет около 0,5° в час. Среди использованных Птолемеем шумерских и вавилонских наблюдений многовековой давности наверняка попадались такие, которые имели ошибки регистрации времени в несколько часов — вот явный источник ошибок в положениях, достигающих нескольких градусов дуги!
Птолемей создал геоцентрическую систему мира, но он не брал на себя задачу создать теорию ошибок измерений. Он не знал способа наименьших квадратов и вообще всего того математического аппарата, который мы называем сегодня теорией уравнительных вычислений. Он стоял перед лицом грубо противоречащих друг другу наблюдений, и он каким-то образом привел их в порядок, к единой системе, поскольку в «Альмагесте» не осталось никаких следов противоречий: все данные тщательно согласованы друг с другом. Имеются ли основания квалифицировать действия Птолемея как подгонку экспериментальных данных, за которую сегодня научного работника могут уволить с работы? Конечно, нет.
Возьмем для наглядного примера современную систему фундаментальных астрономических постоянных. Все постоянные идеально согласованы друг с другом. И незнакомый с современной методикой критик через тысячу лет, подобно Р. Ньютону, тоже может поднять крик о вычислительной подгонке этой системы. Конечно, некоторая разница со случаем Птолемея существует. Эмпирический материал к системе фундаментальных постоянных опубликован, равно как опубликована и методика согласования системы. Птолемей же скрыл «кухню» своих уравнительных вычислений. Из неразберихи противоречивых данных он извлек в общем и целом вполне удовлетворительные осредненные результаты, однако нигде не привел самих исходных измерений.
Наш анализ не будет полным, если пройти мимо того, что новейшие достижения физики, как это ни парадоксально, вновь всколыхнули вопрос о приоритетах между системами Птолемея и Коперника. Теория относительности с отсутствием в ней привилегированных систем координат ставит их сегодня как бы на одну доску. И выделенность гелиоцентрической системы Коперника нуждается в наши дни в специальном философско-методологическом обосновании. «Несмотря на принципиальное равноправие способов существования в любых системах отсчета (в одних системах отсчета существуют одни характеристики реальности, в других — другие), для ряда конкретных задач проще выбирать определенный вид системы отсчета и тем самым определенную картину существования. Система Коперника является именно такой «относительно привилегированной» системой по сравнению с системой Птолемея, ибо подавляющая часть массы системы Солнца и планет (99,86%) сосредоточена в Солнце...» (22).
Кстати сказать, все астрономические ежегодники мира, как и во времена Птолемея, приводят эфемериды небесных тел не в гелиоцентрической, а в геоцентрической системе координат.
Наука не открывает вечных истин, и все исследователи постоянно в пути. Заблуждение думать, что, не будь Птолемея, сразу мог бы на ровном месте расцвести гений Коперника. Кстати, уже после Коперника астрономия совершила ряд следующих шагов, передвинув центр мироздания из центра Солнца в центр Галактики, а впоследствии признав множественность «островных вселенных» и всякое отсутствие какого бы то ни было центра. Эти принципиально важные шаги астрономии уже не отличались драматизмом, поскольку их возможность была понята в процессе драмы перехода от геоцентризма к гелиоцентризму.
Честь и хвала первопроходцам — великому Птолемею и великому Копернику!
Примечания
1 Нейгебауэр О. Точные науки в древности. М.: Наука, 1968. С.147.
2 Алексеев И. С, Проблема существования в астрономии//Философские проблемы астрономии XX века. М.: Наука, 1976. С. 269.
3 Койре Александр Владимирович (1892-1964) — выдающийся историк науки. Родился в Таганроге, с 1908 г. учился в Геттингене, впоследствии работал преимущественно во Франции и США.
4 Койре А. Очерки истории философской мысли. М.: Прогресс, 1985. С. 109-110.
5 Гингерич О. Средневековая астрономия в странах ислама // В мире науки. 1986. № 4. С. 16-26.
6 Колдер Н. Комета надвигается! М.: Мир, 1984. С. 42.
7 Энгельс Ф. Диалектика природы // Маркс К., Энгельс Ф. Соч., 2-изд. Т. 20. С. 345-346.
8 Галилей Г. Избранные труды. М.: Наука, 1964. Т. 1. С. 99.
9 Espinasse M. Robert Hooke. London, 1956. P. 19.
10 Райтсмен Б. Проблема коперниканской революции и распространения коперниковских идей // Историко-астрономические исследования. М.: Наука, 1987. Вып. 19. С. 295-310.
11 Алексеев И. С. Указ. соч. С. 274.
12 Фейерабенд П. Избранные труды по методологии науки. М.: Прогресс, 1986. С. 248-251.
13 Энгельс Ф. Диалектика природы // Маркс К., Энгельс Ф. Соч., 2-е изд. Т. 20, С. 347.
14 Кун Т. Структура научных революций. 2-е изд. М.: Прогресс, 1977. 300 с.
15 Ровный Н. И. Очерки по истории и методологии естествознания. М.: Наука, 1975. С. 197.
16 Эпоним - должностное лицо, с началом деятельности которого в данном греческом полисе начинался новый счет времени.
17 Симпсон Дж. Г. Новое небо, новая Земля, новый человек // Природа. 1979. № 5. С. 37.
18 Ойзерман Т. И. Антифеодальная религиозная революция и ее зачинатель // Соловьев Э. Непобежденный еретик. М.: Молодая гвардия. 1984. С. 3.
19 Паннекук Л. История астрономии. М.: Наука, 1966. С. 163.
20 Ньютон Р. Преступление Клавдия Птолемея. М.: Наука, 1985. С. 368.
21 Newton R. R. The Origin of Ptolemy's astronomical parameters. N. Y.: Center of Archeoastronomy, University Maryland, 1982. 228 p.
22 Алексеев И. С. Указ. соч. С. 280.
Содержание книги:
В. А. Бронштэн. Клавдий Птолемей. Предисловие.
В.А. Бронштэн. Клавдий Птолемей. Глава 1. Место и время действия.
В.А. Бронштэн. Клавдий Птолемей. Глава 2. Астрономия в Вавилоне и Греции до Гиппарха
В.А. Бронштэн. Клавдий Птолемей. Глава 3. Астрономические исследования Гиппарха
В.А. Бронштэн. Клавдий Птолемей. Глава 4. Краткое содержание "Альмагеста"
В. А. Бронштэн. Клавдий Птолемей. Глава 5. Мировоззрение Птолемея
В.А. Бронштэн. Клавдий Птолемей. Глава 6. Небесная сфера: расчеты и измерения
В.А. Бронштэн. Клавдий Птолемей. Глава 7. Теория движения Солнца
В.А. Бронштэн. Клавдий Птолемей. Глава 8. Теория движения Луны
В.А. Бронштэн. Клавдий Птолемей. Глава 9. Звездный каталог
В.А. Бронштэн. Клавдий Птолемей. Глава 10. Теория движения планет
В.А. Бронштэн. Клавдий Птолемей. Глава 11. «Преступление Клавдия Птолемея»
В.А. Бронштэн. Клавдий Птолемей. Глава 12. Работы Птолемея в области географии
В.А. Бронштэн. Клавдий Птолемей. Глава 13. Работы Птолемея в области оптики
В.А. Бронштэн. Клавдий Птолемей. Глава 14. Математика и музыка
В.А. Бронштэн. Клавдий Птолемей. Глава 15. Птолемей и астрология
В.А. Бронштэн. Клавдий Птолемей. Глава 16. Судьба «Альмагеста»
В.А. Бронштэн. Клавдий Птолемей. Глава 17. От эпициклов Птолемея к законам Кеплера
А. А. Гурштейн. Птолемей и Коперник. Послесловие редактора
В.А. Бронштэн. Клавдий Птолемей. Примечания: литература. Публикации трудов Клавдия Птолемея (в хронологическом порядке)